Author:
Liu Caigang,Sun Lisha,Yang Jie,Liu Tong,Yang Yongliang,Kim Se-Min,Ou Xunyan,Wang Yining,Sun Li,Zaidi Mone,New Maria I.,Yuen Tony,Guo Qiyong
Abstract
Fibrous sheath interacting protein 1 (FSIP1) is a cancer antigen expressed in the majority of breast cancer tissues and is associated with poor prognosis. However, the role of FSIP1 in the progression and drug sensitivity of triple-negative breast cancer (TNBC) has not been explored. Here, we show that FSIP1 deficiency by shRNA-mediated knockdown or CRISPR-Cas9–mediated knockout significantly inhibits the proliferation and invasion of TNBC cells and impairs chemotherapy-induced growth inhibition in vivo. Computational modeling predicted that FSIP1 binds to ULK1, and this was established by coimmunoprecipitation. FSIP1 deficiency promoted autophagy, enhanced AMP-activated protein kinase (AMPK) signaling, and decreased mechanistic target of rapamycin (mTOR) and Wnt/β-catenin activity. In contrast, knockdown of AMPK or inhibition of autophagy restored the sensitivity to chemotherapy drugs in TNBC cells. Our findings uncover a role of FSIP1 as well as mechanisms underlying FSIP1 action in drug sensitivity and may, therefore, aid in design of TNBC therapies.
Funder
HHS | NIH | National Institute on Aging
HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases
HHS | NIH | National Institute of Arthritis and Musculoskeletal and Skin Diseases
Publisher
Proceedings of the National Academy of Sciences
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献