Elevated mRNA level indicates FSIP1 promotes EMT and gastric cancer progression by regulating fibroblasts in tumor microenvironment

Author:

Liu Yao1,Jiang Xinju2,Yan Xiuchun3,Yang Shuo2,Bian Xiulan2,Wang Yue4,You Qi3,Zhang Lei2

Affiliation:

1. Department of Cancer Prevention and Physical Examination Center, Harbin Medical University Cancer Hospital , Harbin , 150081 , P. R. China

2. Department of Pathology, Harbin Medical University , Harbin , 150076 , P. R. China

3. Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital , Harbin , 150081 , P. R. China

4. Department of Pharmacology & Toxicology, Wright State University , Dayton , 45435 , United States of America

Abstract

Abstract Fiber sheath interaction protein 1 (FSIP1) plays a crucial role in cancer development and occurrence, but its influence on gastric cancer is still unclear. In this study, differential mRNA analysis was performed by TCGA database for the Limma analysis algorithm, and the gene ontology, the Kyoto Encyclopedia of Genes and Genomes, and the gene set enrichment analysis (GSEA) were used for bioinformatics functional enrichment analysis. A gastric cancer cell model with FSIP1 mRNA knockdown was constructed by RNA interference. Cell counting kit-8 and transwell migration/invasion assay were performed to verify the cell function, and western blotting was employed to confirm the expression of target genes. The GSEA analysis revealed that FSIP1 was associated with epithelial-mesenchymal transition (EMT). The high expression group also had a significant positive correlation with the markers of fibroblast in tumor microenvironment (TME). Western blotting showed that FSIP1 was generally upregulated in gastric cancer cell lines. FSIP1 mRNA knockdown cell lines inhibited gastric cells proliferation, migration, and metastasis in vitro, and the protein levels of EMT-related markers N-cadherin and vimentin were reduced. Our work proved that FSIP1 promoted EMT by regulating fibroblasts in the TME, thereby promoting the carcinogenic activity of cancer cells in proliferation, invasion, and migration. FSIP1 may take a role of the occurrence and could be a potential therapeutic target and offer a new insight into the underlying mechanism of gastric cancer.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3