Abstract
Biofilm communities of Bacillus subtilis bacteria have recently been shown to exhibit collective growth-rate oscillations mediated by electrochemical signaling to cope with nutrient starvation. These oscillations emerge once the colony reaches a large enough number of cells. However, it remains unclear whether the amplitude of the oscillations, and thus their effectiveness, builds up over time gradually or if they can emerge instantly with a nonzero amplitude. Here we address this question by combining microfluidics-based time-lapse microscopy experiments with a minimal theoretical description of the system in the form of a delay-differential equation model. Analytical and numerical methods reveal that oscillations arise through a subcritical Hopf bifurcation, which enables instant high-amplitude oscillations. Consequently, the model predicts a bistable regime where an oscillating and a nonoscillating attractor coexist in phase space. We experimentally validate this prediction by showing that oscillations can be triggered by perturbing the media conditions, provided the biofilm size lies within an appropriate range. The model also predicts that the minimum size at which oscillations start decreases with stress, a fact that we also verify experimentally. Taken together, our results show that collective oscillations in cell populations can emerge suddenly with nonzero amplitude via a discontinuous transition.
Funder
Ministerio de Economía y Competitividad
Departament dʾInnovació, Universitats i Empresa, Generalitat de Catalunya
HHS | NIH | National Institute of General Medical Sciences
DOD | Defense Advanced Research Projects Agency
Publisher
Proceedings of the National Academy of Sciences
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献