Reconstructing the transcriptional regulatory network of probiotic L. reuteri is enabled by transcriptomics and machine learning

Author:

Josephs-Spaulding Jonathan1ORCID,Rajput Akanksha2,Hefner Ying2,Szubin Richard2,Balasubramanian Archana2,Li Gaoyuan2,Zielinski Daniel C.2,Jahn Leonie1,Sommer Morten1ORCID,Phaneuf Patrick1ORCID,Palsson Bernhard O.12ORCID

Affiliation:

1. The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Copenhagen, Denmark

2. Department of Bioengineering, University of California, San Diego, California, USA

Abstract

ABSTRACT Limosilactobacillus reuteri , a probiotic microbe instrumental to human health and sustainable food production, adapts to diverse environmental shifts via dynamic gene expression. We applied the independent component analysis (ICA) to 117 RNA-seq data sets to decode its transcriptional regulatory network (TRN), identifying 35 distinct signals that modulate specific gene sets. Our findings indicate that the ICA provides a qualitative advancement and captures nuanced relationships within gene clusters that other methods may miss. This study uncovers the fundamental properties of L. reuteri ’s TRN and deepens our understanding of its arginine metabolism and the co-regulation of riboflavin metabolism and fatty acid conversion. It also sheds light on conditions that regulate genes within a specific biosynthetic gene cluster and allows for the speculation of the potential role of isoprenoid biosynthesis in L. reuteri ’s adaptive response to environmental changes. By integrating transcriptomics and machine learning, we provide a system-level understanding of L. reuteri ’s response mechanism to environmental fluctuations, thus setting the stage for modeling the probiotic transcriptome for applications in microbial food production. IMPORTANCE We have studied Limosilactobacillus reuteri , a beneficial probiotic microbe that plays a significant role in our health and production of sustainable foods, a type of foods that are nutritionally dense and healthier and have low-carbon emissions compared to traditional foods. Similar to how humans adapt their lifestyles to different environments, this microbe adjusts its behavior by modulating the expression of genes. We applied machine learning to analyze large-scale data sets on how these genes behave across diverse conditions. From this, we identified 35 unique patterns demonstrating how L. reuteri adjusts its genes based on 50 unique environmental conditions (such as various sugars, salts, microbial cocultures, human milk, and fruit juice). This research helps us understand better how L. reuteri functions, especially in processes like breaking down certain nutrients and adapting to stressful changes. More importantly, with our findings, we become closer to using this knowledge to improve how we produce more sustainable and healthier foods with the help of microbes.

Funder

Novo Nordisk Fonden

Publisher

American Society for Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3