The Onset of Collective Behavior in Social Amoebae

Author:

Gregor Thomas1,Fujimoto Koichi2,Masaki Noritaka2,Sawai Satoshi12

Affiliation:

1. Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan.

2. Exploratory Research for Advanced Technology (ERATO) Complex Systems Biology Project, Japan Science and Technology Agency (JST), Tokyo 153-8902, Japan.

Abstract

All Together Now In the social amoeba Dictyostelium discoideum , periodic synthesis and release of cyclic AMP (cAMP) guides the cellular aggregation required to form fruiting bodies. It has been unclear whether the initiation of this behavior is owing to synchronization of autonomously oscillating cells or whether individual cells remain nonoscillatory unless the entire population becomes oscillatory. Gregor et al. (p. 1021 , published online 22 April; see the Perspective by Prindle and Hasty ) used live-cell imaging to show that cAMP pulses originate from a specific location in space and that individual cells move in and out of these signaling centers. The observations suggest that oscillations do not originate from autonomous activities of specialized cells. However, individual cells do display stochastic cAMP-pulsing below a threshold external concentration of cAMP, and the generation of synchronized oscillations could only be modeled accurately when this random pulsing was taken into account.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3