Enhanced optical properties of chemical vapor deposited single crystal diamond by low-pressure/high-temperature annealing

Author:

Meng Yu-fei,Yan Chih-shiue,Lai Joseph,Krasnicki Szczesny,Shu Haiyun,Yu Thomas,Liang Qi,Mao Ho-kwang,Hemley Russell J.

Abstract

Single crystal diamond produced by chemical vapor deposition (CVD) at very high growth rates (up to 150 μm/h) has been successfully annealed without graphitization at temperatures up to 2200 °C and pressures <300 torr. Crystals were annealed in a hydrogen environment by using microwave plasma techniques for periods of time ranging from a fraction of minute to a few hours. This low-pressure/high-temperature (LPHT) annealing enhances the optical properties of this high-growth rate CVD single crystal diamond. Significant decreases are observed in UV, visible, and infrared absorption and photoluminescence spectra. The decrease in optical absorption after the LPHT annealing arises from the changes in defect structure associated with hydrogen incorporation during CVD growth. There is a decrease in sharp line spectral features indicating a reduction in nitrogen-vacancy-hydrogen (NVH) defects. These measurements indicate an increase in relative concentration of nitrogen-vacancy (NV) centers in nitrogen-containing LPHT-annealed diamond as compared with as-grown CVD material. The large overall changes in optical properties and the specific types of alterations in defect structure induced by this facile LPHT processing of high-growth rate single-crystal CVD diamond will be useful in the creation of diamond for a variety of scientific and technological applications.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference35 articles.

1. Fritsch E (1998) in The Nature of Diamonds, ed Harlow GE (Cambridge Univ Press, Cambridge, UK), pp 23–47.

2. Very high growth rate chemical vapor deposition of single-crystal diamond

3. Prospects for large single crystal CVD diamonds;Ho;Industrial Diamond Review,2006

4. Origin of brown coloration in diamond;Hounsome;Phys Rev B,2006

5. Optical transitions in diamond at ultrahigh pressure;Mao;Nature,1991

Cited by 99 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3