High aspect ratio diamond nanosecond laser machining

Author:

Golota Natalie C.ORCID,Preiss David,Fredin Zachary P.,Patil Prashant,Banks Daniel P.,Bahri Salima,Griffin Robert G.ORCID,Gershenfeld Neil

Abstract

AbstractLaser processing of diamond has become an important technique for fabricating next generation microelectronic and quantum devices. However, the realization of low taper, high aspect ratio structures in diamond remains a challenge. We demonstrate the effects of pulse energy, pulse number and irradiation profile on the achievable aspect ratio with 532 nm nanosecond laser machining. Strong and gentle ablation regimes were observed using percussion hole drilling of type Ib HPHT diamond. Under percussion hole drilling a maximum aspect ratio of 22:1 was achieved with 10,000 pulses. To reach aspect ratios on average 40:1 and up to 66:1, rotary assisted drilling was employed using > 2 M pulse accumulations. We additionally demonstrate methods of obtaining 0.1° taper angles via ramped pulse energy machining in 10:1 aspect ratio tubes. Finally, effects of laser induced damage are studied using confocal Raman spectroscopy with observation of up to 36% increase in tensile strain following strong laser irradiation. However, we report that upon application of 600 °C heat treatment, induced strain is reduced by up to ~ 50% with considerable homogenization of observed strain.

Funder

National Institutes of Health

National Insitutes of Health

National Science Foundation

Massachusetts Institute of Technology

Publisher

Springer Science and Business Media LLC

Subject

General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3