Aquatic biodiversity enhances multiple nutritional benefits to humans

Author:

Bernhardt Joey R.ORCID,O’Connor Mary I.ORCID

Abstract

Humanity depends on biodiversity for health, well-being, and a stable environment. As biodiversity change accelerates, we are still discovering the full range of consequences for human health and well-being. Here, we test the hypothesis—derived from biodiversity–ecosystem functioning theory—that species richness and ecological functional diversity allow seafood diets to fulfill multiple nutritional requirements, a condition necessary for human health. We analyzed a newly synthesized dataset of 7,245 observations of nutrient and contaminant concentrations in 801 aquatic animal taxa and found that species with different ecological traits have distinct and complementary micronutrient profiles but little difference in protein content. The same complementarity mechanisms that generate positive biodiversity effects on ecosystem functioning in terrestrial ecosystems also operate in seafood assemblages, allowing more diverse diets to yield increased nutritional benefits independent of total biomass consumed. Notably, nutritional metrics that capture multiple micronutrients and fatty acids essential for human well-being depend more strongly on biodiversity than common ecological measures of function such as productivity, typically reported for grasslands and forests. Furthermore, we found that increasing species richness did not increase the amount of protein in seafood diets and also increased concentrations of toxic metal contaminants in the diet. Seafood-derived micronutrients and fatty acids are important for human health and are a pillar of global food and nutrition security. By drawing upon biodiversity–ecosystem functioning theory, we demonstrate that ecological concepts of biodiversity can deepen our understanding of nature’s benefits to people and unite sustainability goals for biodiversity and human well-being.

Funder

Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference94 articles.

1. Recent Trends in Local-Scale Marine Biodiversity Reflect Community Structure and Human Impacts

2. Marine Taxa Track Local Climate Velocities

3. Marine defaunation: Animal loss in the global ocean

4. FAO , “The status and trends of biodiversity for food and agriculture” in The State of the World’s Biodiversity for Food and Agriculture, J. Bélanger , D. Pilling , Eds. (FAO Commission on Genetic Resources for Food and Agriculture Assessments, 2019), pp. 113–190.

5. IPBES , Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, E. S. Brondizio , J. Settele , S. Díaz , H. T. Ngo , Eds. (IPBES Secretariat, Bonn, Germany, 2019).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3