Systematic changes in circumpolar dust transport to the Subantarctic Pacific Ocean over the last two glacial cycles

Author:

Struve Torben1ORCID,Longman Jack1ORCID,Zander Martin1ORCID,Lamy Frank2ORCID,Winckler Gisela34ORCID,Pahnke Katharina1ORCID

Affiliation:

1. Marine Isotope Geochemistry, Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, 26129 Oldenburg, Germany

2. Department of Marine Geology, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 27568 Bremerhaven, Germany

3. Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964

4. Department of Earth and Environmental Sciences, Columbia University, NY 10027

Abstract

The input of the soluble micronutrients iron (Fe) and/or manganese (Mn) by mineral dust stimulates net primary productivity in the Fe/Mn-deficient Southern Ocean. This mechanism is thought to increase carbon export, thus reducing atmospheric CO 2 during the Pleistocene glacial cycles. Yet, relatively little is known about changes in the sources and transport pathways of Southern Hemisphere dust over glacial cycles. Here, we use the geochemical fingerprint of the dust fraction in marine sediments and multiisotope mixture modeling to identify changes in dust transport to the South Pacific Subantarctic Zone (SAZ). Our data show that dust from South America dominated the South Pacific SAZ during most of the last 260,000 a with maximum contributions of up to ∼70% in the early part of the glacial cycles. The enhanced dust-Fe fluxes of the latter parts of the glacial cycles show increased contributions from Australia and New Zealand, but South American dust remains the dominant component. The systematic changes in dust provenance correspond with grain size variations, consistent with the circumpolar transport of dust by the westerly winds. Maximum contributions of dust from more proximal sources in Australia and New Zealand (up to ∼63%) paired with a finer dust grain size indicate reduced westerly wind speeds over the South Pacific SAZ during deglacial and peak interglacial intervals. These quantitative dust provenance changes provide source-specific dust-Fe fluxes in the South Pacific SAZ and show how their systematic changes in magnitude and timing influence the Southern Ocean dust-Fe feedback on glacial-interglacial to millennial time scales.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3