A Cost Model for Ocean Iron Fertilization as a Means of Carbon Dioxide Removal That Compares Ship‐ and Aerial‐Based Delivery, and Estimates Verification Costs

Author:

Emerson David1ORCID,Sofen Laura E.1ORCID,Michaud Alexander B.1ORCID,Archer Stephen D.1ORCID,Twining Benjamin S.1ORCID

Affiliation:

1. Bigelow Laboratory for Ocean Sciences East Boothbay ME USA

Abstract

AbstractWe present a cost model for implementing a deployment scale effort for conducting ocean iron fertilization (OIF) for marine‐based carbon dioxide removal (CDR). The model incorporates basic oceanographic parameters critical for estimating the effective export of newly fixed CO2 into biomass that is stimulated by Fe addition to an Fe‐limited region of the Southern Ocean. Estimated costs can vary by nearly 100‐fold between best‐case and worst‐case scenarios, with best‐case values of $7/net tonne C captured versus worst‐case $1,500/net tonne C captured, without accounting for verification costs. Primary oceanographic factors that influence cost are the net primary productivity increases achieved via OIF, the amount of C exported into the deep ocean, and the amount of CO2 ventilated back to the atmosphere. The model compares ship‐based versus aerial delivery of Fe to the ocean, and estimates aerial delivery can be 30%–40% more cost effective; however, the specific requirements for aerial delivery require additional research and development. The model also estimates costs associated with verification and environmental monitoring of OIF. These costs increase $/net tonne C captured by 3–4‐fold. Best, intermediate, and worst cases for aerial delivery and ship delivery are $21, $83, $2,033, and $24, $94, $4,691, respectively, inclusive of verification costs. The primary goal of this model is to demonstrate the variability in cost of OIF as a CDR method, and to better understand where additional research is needed to determine the major factors that may make OIF a tractable, nature‐based CDR method.

Funder

Grantham Foundation for the Protection of the Environment

Publisher

American Geophysical Union (AGU)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3