Affiliation:
1. Departamento de Electromagnetismo y Física de la Materia, Instituto Carlos I de Física Teórica y Computacional Universidad de Granada, Granada E-18071, Spain
2. Morton B. Zuckerman Mind Brain Behavior Institute Columbia University, New York, NY 10027
Abstract
The brain is in a state of perpetual reverberant neural activity, even in the absence of specific tasks or stimuli. Shedding light on the origin and functional significance of such a dynamical state is essential to understanding how the brain transmits, processes, and stores information. An inspiring, albeit controversial, conjecture proposes that some statistical characteristics of empirically observed neuronal activity can be understood by assuming that brain networks operate in a dynamical regime with features, including the emergence of scale invariance, resembling those seen typically near phase transitions. Here, we present a data-driven analysis based on simultaneous high-throughput recordings of the activity of thousands of individual neurons in various regions of the mouse brain. To analyze these data, we construct a unified theoretical framework that synergistically combines a phenomenological renormalization group approach and techniques that infer the general dynamical state of a neural population, while designing complementary tools. This strategy allows us to uncover strong signatures of scale invariance that are “quasiuniversal” across brain regions and experiments, revealing that all the analyzed areas operate, to a greater or lesser extent, near the edge of instability.
Publisher
Proceedings of the National Academy of Sciences
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献