Is criticality a unified set-point of brain function?

Author:

Hengen Keith B.ORCID,Shew Woodrow L.ORCID

Abstract

ABSTRACTBrains face selective pressure to optimize computation, broadly defined. This optimization is achieved by myriad mechanisms and processes that influence the brain’s computational state. These include development, plasticity, homeostasis, and more. Despite enormous variability over time and between individuals, do these diverse mechanisms converge on the same set-point? Is there a universal computational optimum around which the healthy brain tunes itself? The criticality hypothesis posits such a unified computational set-point. Criticality is a special dynamical brain state, defined by internally-generated multi-scale, marginally-stable dynamics which maximize many features of information processing. The first experimental support for this hypothesis emerged two decades ago, and evidence has accumulated at an accelerating pace, despite a contentious history. Here, we lay out the logic of criticality as a general computational end-point and systematically review experimental evidence for the hypothesis. We perform a meta-analysis of 143 datasets from manuscripts published between 2003 and 2024. To our surprise, we find that a long-standing controversy in the field is the product of a simple methodological choice that has no bearing on underlying dynamics. Our results suggest that a new generation of research can leverage the concept of criticality—as a unifying principle of brain function–to accelerate our understanding of behavior, cognition, and disease.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3