Population coding under the scale-invariance of high-dimensional noise

Author:

Moosavi S. AminORCID,Hindupur Sai Sumedh R.ORCID,Shimazaki HideakiORCID

Abstract

AbstractHigh-dimensional neural activities exhibiting scale-invariant, power-law noise spectra are ubiquitously observed across various brain regions and species. However, their impact on information coding remains unclear. We provide the scaling conditions for noise covariance that clarify the boundedness of information and establish a quantitative relation between information capacity and population size, based on the properties of scale-invariant noise covariance observed in stimulus-evoked activities of mouse V1 neurons. Our analysis reveals that sublinearly scaling small noise components align sufficiently with the signal direction, enabling neurons to convey stimulus information unboundedly as population size increases. These findings demonstrate that the quasi-universal scaling of neural noise covariance lays the foundation for understanding the scaling and boundedness of population codes, highlighting the critical need to consider the full spectrum of high-dimensional noise.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3