Affiliation:
1. Courant Institute of Mathematical Sciences, New York University, New York, NY 10012
2. Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20742
Abstract
Magnetic fields with quasi-symmetry are known to provide good confinement of charged particles and plasmas, but the extent to which quasi-symmetry can be achieved in practice has remained an open question. Recent work [M. Landreman and E. Paul,
Phys. Rev. Lett.
128, 035001, 2022] reports the discovery of toroidal magnetic fields that are quasi-symmetric to orders-of-magnitude higher precision than previously known fields. We show that these fields can be accurately produced using electromagnetic coils of only moderate engineering complexity, that is, coils that have low curvature and that are sufficiently separated from each other. Our results demonstrate that these new quasi-symmetric fields are relevant for applications requiring the confinement of energetic charged particles for long time scales, such as nuclear fusion. The coils’ length plays an important role for how well the quasi-symmetric fields can be approximated. For the longest coil set considered and a mean field strength of 1 T, the departure from quasi-symmetry is of the order of Earth’s magnetic field. Additionally, we find that magnetic surfaces extend far outside the plasma boundary used by Landreman and Paul, providing confinement far from the core. Simulations confirm that the magnetic fields generated by the new coils confine particles with high kinetic energy substantially longer than previously known coil configurations. In particular, when scaled to a reactor, the best found configuration loses only 0.04% of energetic particles born at midradius when following guiding center trajectories for 200 ms.
Funder
Simons Foundation
National Science Foundation
U.S. Department of Energy
Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada
Publisher
Proceedings of the National Academy of Sciences
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献