Precise stellarator quasi-symmetry can be achieved with electromagnetic coils

Author:

Wechsung Florian1ORCID,Landreman Matt2ORCID,Giuliani Andrew1ORCID,Cerfon Antoine1ORCID,Stadler Georg1

Affiliation:

1. Courant Institute of Mathematical Sciences, New York University, New York, NY 10012

2. Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20742

Abstract

Magnetic fields with quasi-symmetry are known to provide good confinement of charged particles and plasmas, but the extent to which quasi-symmetry can be achieved in practice has remained an open question. Recent work [M. Landreman and E. Paul, Phys. Rev. Lett. 128, 035001, 2022] reports the discovery of toroidal magnetic fields that are quasi-symmetric to orders-of-magnitude higher precision than previously known fields. We show that these fields can be accurately produced using electromagnetic coils of only moderate engineering complexity, that is, coils that have low curvature and that are sufficiently separated from each other. Our results demonstrate that these new quasi-symmetric fields are relevant for applications requiring the confinement of energetic charged particles for long time scales, such as nuclear fusion. The coils’ length plays an important role for how well the quasi-symmetric fields can be approximated. For the longest coil set considered and a mean field strength of 1 T, the departure from quasi-symmetry is of the order of Earth’s magnetic field. Additionally, we find that magnetic surfaces extend far outside the plasma boundary used by Landreman and Paul, providing confinement far from the core. Simulations confirm that the magnetic fields generated by the new coils confine particles with high kinetic energy substantially longer than previously known coil configurations. In particular, when scaled to a reactor, the best found configuration loses only 0.04% of energetic particles born at midradius when following guiding center trajectories for 200 ms.

Funder

Simons Foundation

National Science Foundation

U.S. Department of Energy

Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3