Demonstration of reduced neoclassical energy transport in Wendelstein 7-X

Author:

Beidler C. D.ORCID,Smith H. M.,Alonso A.ORCID,Andreeva T.,Baldzuhn J.,Beurskens M. N. A.,Borchardt M.ORCID,Bozhenkov S. A.,Brunner K. J.ORCID,Damm H.ORCID,Drevlak M.,Ford O. P.ORCID,Fuchert G.,Geiger J.ORCID,Helander P.,Hergenhahn U.ORCID,Hirsch M.,Höfel U.ORCID,Kazakov Ye. O.ORCID,Kleiber R.ORCID,Krychowiak M.,Kwak S.,Langenberg A.ORCID,Laqua H. P.,Neuner U.,Pablant N. A.,Pasch E.,Pavone A.,Pedersen T. S.ORCID,Rahbarnia K.ORCID,Schilling J.ORCID,Scott E. R.ORCID,Stange T.,Svensson J.,Thomsen H.ORCID,Turkin Y.ORCID,Warmer F.ORCID,Wolf R. C.ORCID,Zhang D.,Abramovic I.,Äkäslompolo S.,Alcusón J.,Aleynikov P.,Aleynikova K.,Ali A.,Alonso A.,Anda G.,Ascasibar E.,Bähner J. P.,Baek S. G.,Balden M.,Banduch M.,Barbui T.,Behr W.,Benndorf A.,Biedermann C.,Biel W.,Blackwell B.,Blanco E.,Blatzheim M.,Ballinger S.,Bluhm T.,Böckenhoff D.,Böswirth B.,Böttger L.-G.,Borsuk V.,Boscary J.,Bosch H.-S.,Brakel R.,Brand H.,Brandt C.,Bräuer T.,Braune H.,Brezinsek S.,Brunner K.-J.,Burhenn R.,Bussiahn R.,Buttenschön B.,Bykov V.,Cai J.,Calvo I.,Cannas B.,Cappa A.,Carls A.,Carraro L.,Carvalho B.,Castejon F.,Charl A.,Chaudhary N.,Chauvin D.,Chernyshev F.,Cianciosa M.,Citarella R.,Claps G.,Coenen J.,Cole M.,Cole M. J.,Cordella F.,Cseh G.,Czarnecka A.,Czerski K.,Czerwinski M.,Czymek G.,da Molin A.,da Silva A.,de la Pena A.,Degenkolbe S.,Dhard C. P.,Dibon M.,Dinklage A.,Dittmar T.,Drewelow P.,Drews P.,Durodie F.,Edlund E.,Effenberg F.,Ehrke G.,Elgeti S.,Endler M.,Ennis D.,Esteban H.,Estrada T.,Fellinger J.,Feng Y.,Flom E.,Fernandes H.,Fietz W. H.,Figacz W.,Fontdecaba J.,Fornal T.,Frerichs H.,Freund A.,Funaba T.,Galkowski A.,Gantenbein G.,Gao Y.,García Regaña J.,Gates D.,Geiger B.,Giannella V.,Gogoleva A.,Goncalves B.,Goriaev A.,Gradic D.,Grahl M.,Green J.,Greuner H.,Grosman A.,Grote H.,Gruca M.,Grulke O.,Guerard C.,Hacker P.,Han X.,Harris J. H.,Hartmann D.,Hathiramani D.,Hein B.,Heinemann B.,Helander P.,Henneberg S.,Henkel M.,Hergenhahn U.,Hernandez Sanchez J.,Hidalgo C.,Hollfeld K. P.,Hölting A.,Höschen D.,Houry M.,Howard J.,Huang X.,Huang Z.,Hubeny M.,Huber M.,Hunger H.,Ida K.,Ilkei T.,Illy S.,Israeli B.,Jablonski S.,Jakubowski M.,Jelonnek J.,Jenzsch H.,Jesche T.,Jia M.,Junghanns P.,Kacmarczyk J.,Kallmeyer J.-P.,Kamionka U.,Kasahara H.,Kasparek W.,Kenmochi N.,Killer C.,Kirschner A.,Klinger T.,Knauer J.,Knaup M.,Knieps A.,Kobarg T.,Kocsis G.,Köchl F.,Kolesnichenko Y.,Könies A.,König R.,Kornejew P.,Koschinsky J.-P.,Köster F.,Krämer M.,Krampitz R.,Krämer-Flecken A.,Krawczyk N.,Kremeyer T.,Krom J.,Ksiazek I.,Kubkowska M.,Kühner G.,Kurki-Suonio T.,Kurz P. A.,Landreman M.,Lang P.,Lang R.,Langish S.,Laqua H.,Laube R.,Lazerson S.,Lechte C.,Lennartz M.,Leonhardt W.,Li C.,Li C.,Li Y.,Liang Y.,Linsmeier C.,Liu S.,Lobsien J.-F.,Loesser D.,Loizu Cisquella J.,Lore J.,Lorenz A.,Losert M.,Lücke A.,Lumsdaine A.,Lutsenko V.,Maaßberg H.,Marchuk O.,Matthew J. H.,Marsen S.,Marushchenko M.,Masuzaki S.,Maurer D.,Mayer M.,McCarthy K.,McNeely P.,Meier A.,Mellein D.,Mendelevitch B.,Mertens P.,Mikkelsen D.,Mishchenko A.,Missal B.,Mittelstaedt J.,Mizuuchi T.,Mollen A.,Moncada V.,Mönnich T.,Morisaki T.,Moseev D.,Murakami S.,Náfrádi G.,Nagel M.,Naujoks D.,Neilson H.,Neu R.,Neubauer O.,Ngo T.,Nicolai D.,Nielsen S. K.,Niemann H.,Nishizawa T.,Nocentini R.,Nührenberg C.,Nührenberg J.,Obermayer S.,Offermanns G.,Ogawa K.,Ölmanns J.,Ongena J.,Oosterbeek J. W.,Orozco G.,Otte M.,Pacios Rodriguez L.,Panadero N.,Panadero Alvarez N.,Papenfuß D.,Paqay S.,Pawelec E.,Pedersen T. S.,Pelka G.,Perseo V.,Peterson B.,Pilopp D.,Pingel S.,Pisano F.,Plaum B.,Plunk G.,Pölöskei P.,Porkolab M.,Proll J.,Puiatti M.-E.,Puig Sitjes A.,Purps F.,Rack M.,Récsei S.,Reiman A.,Reimold F.,Reiter D.,Remppel F.,Renard S.,Riedl R.,Riemann J.,Risse K.,Rohde V.,Röhlinger H.,Romé M.,Rondeshagen D.,Rong P.,Roth B.,Rudischhauser L.,Rummel K.,Rummel T.,Runov A.,Rust N.,Ryc L.,Ryosuke S.,Sakamoto R.,Salewski M.,Samartsev A.,Sánchez E.,Sano F.,Satake S.,Schacht J.,Satheeswaran G.,Schauer F.,Scherer T.,Schlaich A.,Schlisio G.,Schluck F.,Schlüter K.-H.,Schmitt J.,Schmitz H.,Schmitz O.,Schmuck S.,Schneider M.,Schneider W.,Scholz P.,Schrittwieser R.,Schröder M.,Schröder T.,Schroeder R.,Schumacher H.,Schweer B.,Sereda S.,Shanahan B.,Sibilia M.,Sinha P.,Sipliä S.,Slaby C.,Sleczka M.,Spiess W.,Spong D. A.,Spring A.,Stadler R.,Stejner M.,Stephey L.,Stridde U.,Suzuki C.,Szabó V.,Szabolics T.,Szepesi T.,Szökefalvi-Nagy Z.,Tamura N.,Tancetti A.,Terry J.,Thomas J.,Thumm M.,Travere J. M.,Traverso P.,Tretter J.,Trimino Mora H.,Tsuchiya H.,Tsujimura T.,Tulipán S.,Unterberg B.,Vakulchyk I.,Valet S.,Vanó L.,van Eeten P.,van Milligen B.,van Vuuren A. J.,Vela L.,Velasco J.-L.,Vergote M.,Vervier M.,Vianello N.,Viebke H.,Vilbrandt R.,von Stechow A.,Vorköper A.,Wadle S.,Wagner F.,Wang E.,Wang N.,Wang Z.,Wauters T.,Wegener L.,Weggen J.,Wegner T.,Wei Y.,Weir G.,Wendorf J.,Wenzel U.,Werner A.,White A.,Wiegel B.,Wilde F.,Windisch T.,Winkler M.,Winter A.,Winters V.,Wolf S.,Wolf R. C.,Wright A.,Wurden G.,Xanthopoulos P.,Yamada H.,Yamada I.,Yasuhara R.,Yokoyama M.,Zanini M.,Zarnstorff M.,Zeitler A.,Zhang H.,Zhu J.,Zilker M.,Zocco A.,Zoletnik S.,Zuin M.,

Abstract

AbstractResearch on magnetic confinement of high-temperature plasmas has the ultimate goal of harnessing nuclear fusion for the production of electricity. Although the tokamak1 is the leading toroidal magnetic-confinement concept, it is not without shortcomings and the fusion community has therefore also pursued alternative concepts such as the stellarator. Unlike axisymmetric tokamaks, stellarators possess a three-dimensional (3D) magnetic field geometry. The availability of this additional dimension opens up an extensive configuration space for computational optimization of both the field geometry itself and the current-carrying coils that produce it. Such an optimization was undertaken in designing Wendelstein 7-X (W7-X)2, a large helical-axis advanced stellarator (HELIAS), which began operation in 2015 at Greifswald, Germany. A major drawback of 3D magnetic field geometry, however, is that it introduces a strong temperature dependence into the stellarator’s non-turbulent ‘neoclassical’ energy transport. Indeed, such energy losses will become prohibitive in high-temperature reactor plasmas unless a strong reduction of the geometrical factor associated with this transport can be achieved; such a reduction was therefore a principal goal of the design of W7-X. In spite of the modest heating power currently available, W7-X has already been able to achieve high-temperature plasma conditions during its 2017 and 2018 experimental campaigns, producing record values of the fusion triple product for such stellarator plasmas3,4. The triple product of plasma density, ion temperature and energy confinement time is used in fusion research as a figure of merit, as it must attain a certain threshold value before net-energy-producing operation of a reactor becomes possible1,5. Here we demonstrate that such record values provide evidence for reduced neoclassical energy transport in W7-X, as the plasma profiles that produced these results could not have been obtained in stellarators lacking a comparably high level of neoclassical optimization.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3