Coil optimization for quasi-helically symmetric stellarator configurations

Author:

Wiedman A.,Buller S.ORCID,Landreman M.ORCID

Abstract

Filament-based coil optimizations are performed for several quasi-helical stellarator configurations, beginning with the one from Landreman & Paul (Phys. Rev. Lett., vol. 128, 2022, 035001), demonstrating that precise quasi-helical symmetry can be achieved with realistic coils. Several constraints are placed on the shape and spacing of the coils, such as low curvature and sufficient plasma–coil distance for neutron shielding. The coils resulting from this optimization have a maximum curvature 0.8 times that of the coils of the Helically Symmetric eXperiment (HSX) and a mean squared curvature 0.4 times that of the HSX coils when scaled to the same plasma minor radius. When scaled up to reactor size and magnetic field strength, no fast particle losses were found in the free-boundary configuration when simulating 5000 alpha particles launched at $3.5\,\mathrm {MeV}$ on the flux surface with a normalized toroidal flux of $s=0.5$ . An analysis of the tolerance of the coils to manufacturing errors is performed using a Gaussian process model, and the coils are found to maintain low particle losses for smooth, large-scale errors up to amplitudes of approximately $0.15\,\mathrm {m}$ . Another coil optimization is performed for the Landreman–Paul configuration with the additional constraint that the coils are purely planar. Visual inspection of the Poincaré plot of the resulting magnetic field-lines reveal that the planar modular coils alone do a poor job of reproducing the target equilibrium. Additional non-planar coil optimizations are performed for the quasi-helical configuration with $5\,\%$ volume-averaged plasma beta from Landreman et al. (Phys. Plasma, vol. 29, issue 8, 2022, 082501), and a similar configuration also optimized to satisfy the Mercier criterion. The finite beta configurations had larger fast-particle losses, with the free-boundary Mercier-optimized configuration performing the worst, losing approximately $5.5\,\%$ of alpha particles launched at $s=0.5$ .

Funder

Fusion Energy Sciences

Publisher

Cambridge University Press (CUP)

Reference40 articles.

1. Confirmation of the topology of the Wendelstein 7-X magnetic field to better than 1:100,000

2. Quasi-helically symmetric toroidal stellarators

3. Wiedman, A.V. , Buller, S. & Landreman, M. 2023 Data and scripts for the publication “Coil Optimization for Quasi-helically Symmetric Stellarator Configurations”. https://zenodo.org/records/10211349

4. Steepest-descent moment method for three-dimensional magnetohydrodynamic equilibria

5. SIMSOPT: A flexible framework for stellarator optimization

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3