Affiliation:
1. University of Pennsylvania
2. University of North Carolina
Abstract
Examinations that permit students to choose a subset of the items are popular despite the potential that students may take examinations of varying difficulty as a result of their choices. We provide a set of conditions for the validity of inference for Item Response Theory (IRT) models applied to data collected from choice-based examinations. Valid likelihood and Bayesian inference using standard estimation methods require (except in extraordinary circumstances) that there is no dependence, after conditioning on the observed item responses, between the examinees choices and their (potential but unobserved) responses to omitted items, as well as their latent abilities. These independence assumptions are typical of those required in much more general settings. Common low-dimensional IRT models estimated by standard methods, though potentially useful tools for educational data, do not resolve the difficult problems posed by choice-based data.
Publisher
American Educational Research Association (AERA)
Subject
Social Sciences (miscellaneous),Education
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献