Abstract
The purpose of this paper is to formulate optimal sequential rules for mastery tests. The framework for the approach is derived from Bayesian sequential decision theory. Both a threshold and linear loss structure are considered. The binomial probability distribution is adopted as the psychometric model involved. Conditions sufficient for sequentially setting optimal cutting scores are presented. Optimal sequential rules will be derived for the case of a subjective beta distribution representing prior true level of functioning. An empirical example of sequential mastery esting for concept-learning in medicine concludes the paper.
Publisher
American Educational Research Association (AERA)
Subject
Social Sciences (miscellaneous),Education
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献