On Computing the Key Probability in the Stochastically Curtailed Sequential Probability Ratio Test

Author:

Huebner Alan R.1,Finkelman Matthew D.2

Affiliation:

1. University of Notre Dame, IN, USA

2. Tufts University School of Dental Medicine, Boston, MA, USA

Abstract

The Stochastically Curtailed Sequential Probability Ratio Test (SCSPRT) is a termination criterion for computerized classification tests (CCTs) that has been shown to be more efficient than the well-known Sequential Probability Ratio Test (SPRT). The performance of the SCSPRT depends on computing the probability that at a given stage in the test, an examinee’s current interim classification status will not change before the end of the test. Previous work discusses two methods of computing this probability, an exact method in which all potential responses to remaining items are considered and an approximation based on the central limit theorem (CLT) requiring less computation. Generally, the CLT method should be used early in the test when the number of remaining items is large, and the exact method is more appropriate at later stages of the test when few items remain. However, there is currently a dearth of information as to the performance of the SCSPRT when using the two methods. For the first time, the exact and CLT methods of computing the crucial probability are compared in a simulation study to explore whether there is any effect on the accuracy or efficiency of the CCT. The article is focused toward practitioners and researchers interested in using the SCSPRT as a termination criterion in an operational CCT.

Publisher

SAGE Publications

Subject

Psychology (miscellaneous),Social Sciences (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3