A new adaptive testing algorithm for shortening health literacy assessments

Author:

Kandula Sasikiran,Ancker Jessica S,Kaufman David R,Currie Leanne M,Zeng-Treitler Qing

Abstract

Abstract Background Low health literacy has a detrimental effect on health outcomes, as well as ability to use online health resources. Good health literacy assessment tools must be brief to be adopted in practice; test development from the perspective of item-response theory requires pretesting on large participant populations. Our objective was to develop a novel classification method for developing brief assessment instruments that does not require pretesting on large numbers of research participants, and that would be suitable for computerized adaptive testing. Methods We present a new algorithm that uses principles of measurement decision theory (MDT) and Shannon's information theory. As a demonstration, we applied it to a secondary analysis of data sets from two assessment tests: a study that measured patients' familiarity with health terms (52 participants, 60 items) and a study that assessed health numeracy (165 participants, 8 items). Results In the familiarity data set, the method correctly classified 88.5% of the subjects, and the average length of test was reduced by about 50%. In the numeracy data set, for a two-class classification scheme, 96.9% of the subjects were correctly classified with a more modest reduction in test length of 35.7%; a three-class scheme correctly classified 93.8% with a 17.7% reduction in test length. Conclusions MDT-based approaches are a promising alternative to approaches based on item-response theory, and are well-suited for computerized adaptive testing in the health domain.

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3