Abstract
Abstract
For a subset S of nonnegative integers and a vector
$\mathbf {a}=(a_1,\ldots ,a_k)$
of positive integers, define the set
$V^{\prime }_S(\mathbf {a})=\{ a_1s_1+\cdots +a_ks_k : s_i\in S\}-\{0\}$
. For a positive integer n, let
$\mathcal T(n)$
be the set of integers greater than or equal to n. We consider the problem of finding all vectors
$\mathbf {a}$
satisfying
$V^{\prime }_S(\mathbf {a})=\mathcal T(n)$
when S is the set of (generalised) m-gonal numbers and n is a positive integer. In particular, we completely resolve the case when S is the set of triangular numbers.
Publisher
Cambridge University Press (CUP)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Tight universal octagonal forms;The Ramanujan Journal;2024-04-23
2. TIGHT UNIVERSAL SUMS OF m-GONAL NUMBERS;Bulletin of the Australian Mathematical Society;2022-07-13