Abstract
AbstractFor a positive integer n, let
$\mathcal T(n)$
denote the set of all integers greater than or equal to n. A sum of generalised m-gonal numbers g is called tight
$\mathcal T(n)$
-universal if the set of all nonzero integers represented by g is equal to
$\mathcal T(n)$
. We prove the existence of a minimal tight
$\mathcal T(n)$
-universality criterion set for a sum of generalised m-gonal numbers for any pair
$(m,n)$
. To achieve this, we introduce an algorithm giving all candidates for tight
$\mathcal T(n)$
-universal sums of generalised m-gonal numbers. Furthermore, we provide some experimental results on the classification of tight
$\mathcal T(n)$
-universal sums of generalised m-gonal numbers.
Publisher
Cambridge University Press (CUP)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Tight universal octagonal forms;The Ramanujan Journal;2024-04-23