Buoyancy-induced turbulent mixing in a narrow tilted tank

Author:

Lin Tiras Y.,Caulfield C. P.,Woods Andrew W.

Abstract

We describe a series of experiments in which a constant buoyancy flux $B_{s}$ of salty dyed water of density ${\it\rho}_{s}$ is introduced at the top of a long narrow tank of square cross-section tilted at an angle ${\it\theta}$ to the vertical. The tank is initially filled with fresh clear water of density ${\it\rho}_{0}<{\it\rho}_{s}$, and we investigate the resulting buoyancy-driven turbulent mixing at various tilt angles ${\it\theta}$. Using a light-attenuation image analysis method, we determine the evolution of the reduced gravity $g^{\prime }=g({\it\rho}-{\it\rho}_{0})/{\it\rho}_{0}$ of the mixed fluid in time and space as it propagates towards the bottom of the tank. For all tilt angles tested (${\it\theta}=0^{\circ }$ to ${\it\theta}=45^{\circ }$), we focus exclusively on high-Reynolds-number experiments, where the flow remains turbulent both along the length and across the width of the tank. We find that when ${\it\theta}>0^{\circ }$, the cross-tank component of gravity acts to segregate the dense fluid from the relatively lighter fluid, and a statically stable gradient of $g^{\prime }$ across the width of the tank occurs more frequently than a statically unstable gradient, i.e. $(\partial g^{\prime }/\partial x)<0$ occurs more frequently than $(\partial g^{\prime }/\partial x)>0$. This is in contrast to the case when ${\it\theta}=0^{\circ }$, where instantaneous cross-tank gradients of reduced gravity may be positive or negative, but are equal to zero in an ensemble average. We observe that when ${\it\theta}>0^{\circ }$, the cross-tank gradient of reduced gravity induces a turbulent counterflow where dense fluid flows down the upward-facing surface of the tank and lighter fluid flows in the opposing direction above. We model the evolution of the cross-tank averaged, ensemble averaged reduced gravity $\langle \overline{g^{\prime }}\rangle _{e}$ as a diffusive process using Prandtl’s mixing length theory, building on the model of van Sommeren et al. (J. Fluid Mech., vol. 701, 2012, pp. 278–303) who considered purely vertical tanks. We model the fluctuations (from the cross-tank averaged quantity) of reduced gravity $\langle {\hat{g}}^{\prime }\rangle _{e}$ and counterflow velocity $\langle {\hat{w}}\rangle _{e}$ by characterising the mixing across the width of the tank with a cross-tank turbulent diffusivity ${\it\kappa}_{T,x}$, which we assume is constant in the cross-tank coordinate $x$. We show that the counterflow that exists when ${\it\theta}>0^{\circ }$ acts directly to enhance the effective along-tank turbulent diffusivity ${\it\kappa}_{T,z}$, and from experiments, we find that the mixing length increases approximately linearly with ${\it\theta}$, and that both ${\it\kappa}_{T,x}$ and ${\it\kappa}_{T,z}$ are proportional to $(\partial \langle \overline{g^{\prime }}\rangle _{e}/\partial z)^{1/2}$.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Penetrative convection in slender containers;Environmental Fluid Mechanics;2017-03-15

2. Buoyancy-induced turbulent mixing in a narrow tilted tank;Journal of Fluid Mechanics;2015-05-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3