Turbulent gravitational convection from maintained and instantaneous sources

Author:

Abstract

Theories of convection from maintained and instantaneous sources of buoyancy are developed, using methods which are applicable to stratified body fluids with any variation of density with height; detailed solutions have been presented for the case of a stably stratified fluid with a linear density gradient. The three main assumptions involved are (i) that the profiles of vertical velocity and buoyancy are similar at all heights, (ii) that the rate of entrainment of fluid at any height is proportional to a characteristic velocity at that height, and (iii) that the fluids are incompressible and do not change volume on mixing, and that local variations in density throughout the motion are small compared to some reference density. The governing equations are derived in non-dimensional form from the conditions of conservation of volume, momentum and buoyancy, and a numerical solution is obtained for the case of the maintained source, This leads to a prediction of the final height to which a plume of light fluid will rise in a stably stratified fluid. Estimates of the constant governing the rate of entrainment are made by comparing the theory with some previous results in uniform fluids, and with the results of new experiments carried out in a stratified salt solution. For the case of an instantaneous source of buoyancy there is an exact solution; the entrainment constant is again estimated from laboratory results for a stratified fluid Finally, the analysis is applied to the (compressible) atmosphere, by making the customary substitution of potential temperature for temperature. Predictions are made of the height to which smoke plumes from typical sources of heat should rise in a still, stably stratified atmosphere under various conditions.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Reference11 articles.

1. Heat convection and buoyancy effects in fluids

2. Goldstein S. (ed.) 1938 Modern developments in fluid dynamics. Oxford: Clarendon Press.

3. Hartree D. R. 1952 Numerical analysis. Oxford: Clarendon Press.

4. J . A ppl;Kuethe A. M.;Mech.,1935

5. Continuous convection from an isolated source of heat

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3