Direct numerical simulation of gas transfer across the air–water interface driven by buoyant convection

Author:

Wissink J. G.,Herlina H.

Abstract

A series of direct numerical simulations of mass transfer across the air–water interface driven by buoyancy-induced convection have been carried out to elucidate the physical mechanisms that play a role in the transfer of heat and atmospheric gases. The buoyant instability is caused by the presence of a thin layer of cold water situated on top of a body of warm water. In time, heat and atmospheric gases diffuse into the uppermost part of the thermal boundary layer and are subsequently transported down into the bulk by falling sheets and plumes of cold water. Using a specifically designed numerical code for the discretization of scalar convection and diffusion, it was possible to accurately resolve this buoyant-instability-induced transport of atmospheric gases into the bulk at a realistic Prandtl number ($\mathit{Pr}=6$) and Schmidt numbers ranging from$\mathit{Sc}=20$to$\mathit{Sc}=500$. The simulations presented here provided a detailed insight into instantaneous gas transfer processes. The falling plumes with highly gas-saturated fluid in their core were found to penetrate deep inside the bulk. With an initial temperature difference between the water surface and the bulk of slightly above$2$ K, peaks in the instantaneous heat flux in excess of$1600~\text{W}~\text{m}^{-2}$were observed, proving the potential effectiveness of buoyant-convective heat and gas transfer. Furthermore, the validity of the scaling law for the ratio of gas and heat transfer velocities$K_{L}/H_{L}\propto (\mathit{Pr}/\mathit{Sc})^{0.5}$for the entire range of Schmidt numbers considered was confirmed. A good time-accurate approximation of$K_{L}$was found using surface information such as velocity fluctuations and convection cell size or surface divergence. A reasonable time accuracy for the$K_{L}$estimation was obtained using the horizontal integral length scale and the root mean square of the horizontal velocity fluctuations in the upper part of the bulk.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3