Surface-temperature-induced Marangoni effects on developing buoyancy-driven flow

Author:

Wissink Jan G.ORCID,Herlina H.ORCID

Abstract

To investigate the initial development of the Rayleigh–Bénard–Marangoni (RBM) instability in a relatively deep domain, direct numerical simulations for a large range of Marangoni and Rayleigh numbers were performed. In the simulations, the surface was assumed to be flat and surface cooling was modelled by a constant heat flux. The small-scale dynamics of the flow and temperature fields near the surface was fully resolved by using a non-uniform vertical grid distribution. A detailed investigation of the differences in physical mechanisms that drive the Rayleigh- and Marangoni-dominated instabilities is presented. To this end, various properties such as the maturation rate of convection cells, the fluctuating kinetic energy and the surface characteristic length scale were studied. It was confirmed that buoyancy forces and surface-temperature-gradient-driven Marangoni forces enhance one another in promoting the development of the RBM instability. When using a relevant measure of the effective thermal boundary layer thickness as length scale, both the critical Marangoni and Rayleigh numbers, obtained for the purely Marangoni- and purely Rayleigh-driven instabilities, were found to be in good agreement with the literature.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3