Study on the Effect of Structural Parameters of Volume Control Tank on Gas–Liquid Mass Transfer

Author:

Hu Jian1,Li Weiguang2,Chi Xiangyu2,Wang Naihua2ORCID

Affiliation:

1. State Key Laboratory of Nuclear Power Safety Technology and Equipment, China Nuclear Power Engineering Co., Ltd., Shenzhen 518172, China

2. Institute of Thermal Science and Technology, Shandong University, Jinan 250061, China

Abstract

The volume control tank (VCT) is an important facility in the primary circuit of nuclear power plants. During the normal operation of nuclear power plants, the mass transfer between the gas and liquid phases occurs in the VCT at all times. It is driven by submerged jets, which may cause potential risks to the operational safety of nuclear power plants. It is necessary to conduct an in-depth study to gain a deeper understanding of the gas–liquid mass transfer behavior in the VCT. In this paper, a new gas–liquid mass transfer model is developed that combines a surface divergence model with a CFD model to accurately simulate the mass transfer process of the gas phase into the liquid phase. The simulation data were verified by the experimental results. The deviation between the simulation results and experimental results is less than 6.55%. Based on this model, a simulation study was carried out for the effect of structural parameters of the VCT on gas–liquid mass transfer. The results show that the double-vortex structure above the jet inlet, the surface jet at the gas–liquid interface, and the vortex at the end of the jet are the three factors dominating the gas–liquid mass transfer in the VCT. The gas–liquid mass transfer can be influenced by the jet diameter since the jet diameter has a remarkable effect on the Kolmogorov scale and the macroscopic flow field structure. Moreover, both the Kolmogorov scale and the macroscopic flow field structure can be affected by the jet height. However, these two effects cancel each other out. Thus, the influence of the jet height on the gas–liquid mass transfer rate is negligible.

Funder

Key R&D Program of Shandong Province

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3