Antigen localization and the induction of resistance in mice vaccinated with irradiated cercariae ofSchistosoma mansoni

Author:

Mountford A. P.,Coulson P. S.,Wilson R. A.

Abstract

SUMMARYThe fate of75Se-labelled parasites and their released pre-synthesized macromolecules has been followed in three murine infection models. Parasite numbers in specific tissues were determined by autoradiography, and released material was estimated by gamma-counting of tissues, with adjustment for the presence of parasite-associated radiolabel. Marked differences were found between the three models. The pattern of migration of normal schistosomula was similar to that previously reported. In addition we have described the transit of parasites through the lymph nodes draining the infection site. Significant quantities of released material were detected in the skin, draining lymph nodes, bloodstream and liver. The circulating material was of parasite origin, macromolecular, and hence potentially antigenic. In comparison to the normal infection, radiation-attenuated parasites (inducing a high level of resistance to challenge) persisted in the skin, draining lymph nodes and lungs, releasing a proportionally greater amount of material in the nodes. In mice exposed to attenuated parasites and treated with the compound ROl1–3128 at 24 h (inducing a low level of resistance) there was an early death and rapid clearance of the parasites whilst still in the skin. This situation resulted in the highest levels of released material in the skin, bloodstream and liver, but negligible levels in the draining lymph nodes. We suggest that the persistence of radiation-attenuated parasites in the skin and draining lymph nodes, together with the prolonged release of antigen in the latter site, compared to the normal situation, are major factors in the induction of resistance.

Publisher

Cambridge University Press (CUP)

Subject

Infectious Diseases,Animal Science and Zoology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3