The migration and survival of gamma-irradiated Schistosoma mansoni larvae and the duration of host—parasite contact in relation to the induction of resistance in mice

Author:

Mangold Beverly L.,Dean D. A.

Abstract

SUMMARYThe migration in mice of 20, 50 and 90 krad. 60Co-irradiated Schistosoma mansoni larvae, biosynthetically radio-isotope labelled with [75Se]-selenomethionine, was evaluated by autoradiography of compressed tissues and compared to the migration of non-irradiated 75Se-labelled larvae. The migration of 20 krad. -irradiated schistosomula between skin and lungs was slightly delayed but otherwise paralleled the migration of normal, non-irradiated schistosomula during the first 8 days following exposure. By day 8 over 90% of both non-irradiated and 20 krad. -irradiated organises were located in the lungs. In contrast to non-irradiated organisms, however, only a small proportion of 20 krad. organisms migrated to the liver. The delay in migration between skin and lungs was more pronounced with 50 krad. -irradiated schistosomula. Nevertheless, 45–93% of 50 krad. -irradiated organisms migrated to the lungs by 8 days post-exposure. Over 90% of the 50 krad. larvae detected in the mouse on day 21 were in the lungs; no more than an occasional 50 krad.-irradiated organism was ever detected in the liver. In three experiments, over 85% of the 90 krad. -irradiated organisms were retained in the skin; in a fourth experiment about half of the 90 krad. -irradiated organisms migrated as far as the lungs. As with 50 krad. organisms, only an occasional 90 krad. organism was ever detected in the liver. Removal of the skin exposure site within the first 4 days of immunization with either 50 or 90 krad. -irradiated cercariae completely blocked the induction of resistance. Removal between the 4th and 6th days gave variable results. Mice had to be in contact with the irradiated larvae for a minimum of 8–11 days to stimulate a level of resistance comparable to that of mice whose immunization site was not removed.

Publisher

Cambridge University Press (CUP)

Subject

Infectious Diseases,Animal Science and Zoology,Parasitology

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3