Minimizing expected makespan in stochastic open shops

Author:

Pinedo Michael L.,Ross Sheldon M.

Abstract

Suppose that two machines are available to process n tasks. Each task has to be processed on both machines; the order in which this happens is immaterial. Task j has to be processed on machine 1 (2) for random time Xj (Yj ) with distribution Fj (Gj ). This kind of model is usually called an open shop. The time that it takes to process all tasks is normally called the makespan. Every time a machine finishes processing a task the decision-maker has to decide which task to process next. Assuming that Xj and Yj have the same exponential distribution we show that the optimal policy instructs the decision-maker, whenever a machine is freed, to start processing the task with longest expected processing time among the tasks still to be processed on both machines. If all tasks have been processed at least once, it does not matter what the decision-maker does, as long as he keeps the machines busy. We then consider the case of n identical tasks and two machines with different speeds. The time it takes machine 1 (2) to process a task has distribution F (G). Both distributions F and G are assumed to be new better than used (NBU) and we show that the decision-maker stochastically minimizes the makespan when he always gives priority to those tasks which have not yet received processing on either machine.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics,Statistics and Probability

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Strategic Idleness and Dynamic Scheduling in an Open-Shop Service Network: Case Study and Analysis;Manufacturing & Service Operations Management;2017-02

2. Stochastic scheduling for a two-machine open shop;Journal of Applied Probability;1997-09

3. Optimal policies in stochastic shop scheduling;Annals of Operations Research;1984-10

4. Multiserver Stochastic Scheduling;Deterministic and Stochastic Scheduling;1982

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3