Preliminary stages of fouling from whey protein solutions

Author:

Belmar-Beiny M. Teresa,Fryer Peter J.

Abstract

SummaryFouling from milk fluids is a severe industrial problem which reduces the efficiency of process plant. The chemistry of fouling has been thoroughly investigated but the sequence of events that occur is not yet clear. Deposit contains both protein and minerals. Experiments have been carried out to determine the sequence of events in the fouling of stainless steel surfaces at 96 °C from turbulent flows of whey. Contact times between 4 and 210 s have been studied, and surface analysis techniques used to detect the distribution of elements. The first layer of deposit, formed after 4 s of contact between the fluid and the surface (fluid temperature 68 and 73 °C), consisted mainly of protein and was identified by X-ray photoelectron spectroscopy analysis. There was a lag phase of up to 150 s for a fluid temperature of 73 °C before deposit aggregates were observed to adsorb on to the surface. These aggregates were identified as protein and Ca by X-ray elemental mapping. No P was found in any experiments for this exposure. After 60 min contact time, however, both Ca and P were found at the interface between deposit and the stainless steel surface, irrespective of the Ca and P content of the test fluid.

Publisher

Cambridge University Press (CUP)

Subject

Animal Science and Zoology,General Medicine,Food Science

Reference30 articles.

1. Gotham S. M. 1990 Mechanisms of Protein Fouling of Heat Exchangers. PhD thesis, University of Cambridge, UK

2. Fouling of heat transfer surfaces by dairy liquida;Delsing;Netherlands Milk and Dairy Journal,1983

3. A study of the initial stages of deposition from whey protein solutions;Belmar-Beiny;Entropie,1992

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3