A general numerical unsteady non-linear lifting line model for engineering aerodynamics studies

Author:

Sugar-Gabor O.

Abstract

ABSTRACTThe lifting-line theory is widely used for obtaining aerodynamic performance results in various engineering fields, from aircraft conceptual design to wind-power generation. Many different models were proposed, each tailored for a specific purpose, thus having a rather narrow applicability range. This paper presents a general lifting-line model capable of accurately analysing a wide range of engineering problems involving lifting surfaces, both steady-state and unsteady cases. It can be used for lifting surface with sweep, dihedral, twisting and winglets and includes features such as non-linear viscous corrections, unsteady and quasi-steady force calculation, stable wake relaxation through fictitious time marching and wake stretching and dissipation. Possible applications include wing design for low-speed aircraft and unmanned aerial vehicles, the study of high-frequency avian flapping flight or wind-turbine blade design and analysis. Several validation studies are performed, both steady-state and unsteady, the method showing good agreement with experimental data or numerical results obtained with more computationally expensive methods.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

Reference49 articles.

1. Vorticity and Vortex Dynamics

2. Fast Analysis of Unsteady Wing Aerodynamics via Stochastic Models

3. Numerical lifting line theory applied to drooped leading-edge wings below and above stall

4. Halfman R.L. Experimental aerodynamic derivatives of a sinusoidally oscillating airfoil in two-dimensional flow, NACA Report no. 1108, 1952, Massachusetts Inst. of Tech, Massachusetts, US.

5. Lifting-line theory for an unsteady wing as a singular perturbation problem

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3