Accuracy of high-order, discrete approximations to the lifting-line equation

Author:

Coder J.G.ORCID

Abstract

AbstractThe accuracy of several numerical schemes for solving the lifting-line equation is investigated. Circulation is represented on discrete elements using polynomials of varying degree, and a novel scheme is introduced based on a discontinuous representation that permits arbitrary polynomial degrees to be used. Satisfying the Helmholtz theorems at inter-element boundaries penalises the discontinuities in the circulation distribution, which helps ensure the solution converges towards the correct, continuous behaviour as the number of elements increases. It is found that the singular vorticity at the wing tips drives the leading-order error of the solution. With constant panel widths, numerical schemes exhibit suboptimal accuracy irrespective of the basis degree; however, driving the width of the tip panel to zero at a rate faster than the domain average enables improved accuracy to be recovered for the quadratic-strength elements. In all cases considered, higher-order circulation elements exhibit higher accuracy than their lower-order counterparts for the same total degrees of freedom in the solution. It is also found that the discontinuous quadratic elements are more accurate than their continuous counterparts while also being more flexible for geometric representation.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

Reference45 articles.

1. [28] Drela, M. and Youngren, H. XROTOR User Guide, MIT Department of Aeronautics and Astronautics, February 2022.

2. [29] Johnson, W. A History of Rotorcraft Comprehensive Analysis, NASA/TP-2012-216012, 2012.

3. [24] Drela, M. and Youngren, H. AVL 3.40 User Primer, MIT Department of Aeronautics and Astronautics, February 2022.

4. Über die Entstehung des dynamischen Auftriebes von Tragflügeln

5. [31] Saberi, H. , Khoshlahjeh, M. , Ormiston, R.A. and Rutkowski, M.J. Overview of RCAS and Application to Advanced Rotorcraft Problems, 4th Decennial Specialists’ Conference on Aeromechanics, San Francisco, CA, January 2004.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3