Abstract
This article presents a first-principles model for electrosprays operating in the ion emission regime. The model considers ion emission from a Taylor cone anchored on a tubular emitter, including the fluid dynamics as well as the electrostatic interaction between the liquid, the electrodes and the ion beam. The model accounts for the self-heating of the liquid due to ohmic and viscous dissipation, and the associated variation of the viscosity and electrical conductivity with temperature. The numerical solution reproduces the experimental phenomenology of the ion emission regime (e.g. current levels, the high sensitivity to the ion solvation energy, the proportionality between the emitted current and emitter potential, etc.), and other aspects of the underlying physics such as the coupling between ion emission and self-heating of the liquid. The numerical solution is also used to validate a simpler analytical model that yields scaling laws for the emitted current, and for the characteristic length, current density and electric field of the emission region. The analytical model also provides liquid-dependent criteria for the onset of the ion emission regime.
Funder
Air Force Office of Scientific Research
Air Force Research Laboratory
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献