Analysis of self-heating in electrosprays operating in the cone-jet mode

Author:

Magnani MarcoORCID,Gamero-Castaño ManuelORCID

Abstract

The electrohydrodynamic processes taking place in a cone jet cause ohmic and viscous dissipation, and ultimately self-heating of the liquid. Despite this, previous analyses have modelled cone jets as isothermal systems. To investigate the validity of this assumption, this work applies the leaky-dielectric model to cone jets, while also requiring conservation of energy to reproduce the variation of temperature caused by dissipation and temperature-dependent liquid properties. The main goals are to determine whether there exist electrospraying conditions for which the isothermal assumption is inaccurate, and quantify the temperature field under such conditions. The work confirms that self-heating and thermal effects are important in liquids with sufficiently high conductivities, which is a significant limit because these electrical conductivities are needed to produce jets and droplets with radii of tens of nanometres or smaller. The numerical solution provides accurate expressions for evaluating the dissipation and the temperature increase in cone jets, and confirms that thermal effects cause the apparent breakdown of the traditional scaling law for the current of cone jets of highly conducting liquids.

Funder

Air Force Office of Scientific Research

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3