The steady cone-jet mode of electrospraying close to the minimum volume stability limit

Author:

Ponce-Torres A.,Rebollo-Muñoz N.ORCID,Herrada M. A.,Gañán-Calvo A. M.,Montanero J. M.ORCID

Abstract

We study both numerically and experimentally the steady cone-jet mode of electrospraying close to the stability limit of minimum flow rate. The leaky dielectric model is solved for arbitrary values of the relative permittivity and the electrohydrodynamic Reynolds number. The linear stability analysis of the base flows is conducted by calculating their global eigenmodes. The minimum flow rate is determined as that for which the growth factor of the dominant mode becomes positive. We find a good agreement between this theoretical prediction and experimental values. The analysis of the spatial structure of the dominant perturbation may suggest that instability originates in the cone-jet transition region, which shows the local character of the cone-jet mode. The electric relaxation time is considerably smaller than the residence time of a fluid particle in the cone-jet transition region (defined as the region where the surface and bulk intensities are of the same order of magnitude) except for the high-polarity case, where these characteristic times are commensurate with each other. The superficial charge is not relaxed within the cone-jet transition region except for the high-viscosity case, because significant inner electric fields arise in the cone-jet transition region. However, those electric fields are not large enough to invalidate the scaling laws that do not take them into account. Viscosity and polarization forces compete against the driving electric shear stress in the cone-jet transition region for small Reynolds numbers and large relative permittivities, respectively. Capillary forces may also play a significant role in the minimum flow rate stability limit. The experiments show the noticeable stabilizing effect of the feeding capillary for diameters even two orders of magnitude larger than that of the jet. Stable jets with electrification levels higher than the Rayleigh limit are produced. During the jet break-up, two consecutive liquid blobs may coalesce and form a bigger emitted droplet, probably due to the jet acceleration. The size of droplets exceeds Rayleigh’s prediction owing to the stabilizing effect of both the axial electric field and viscosity.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3