Electrohydrodynamic printing for high resolution patterning of flexible electronics toward industrial applications

Author:

Yin Zhouping12ORCID,Wang Dazhi3,Guo Yunlong4,Zhao Zhiyuan4,Li Liqiang5ORCID,Chen Wei12,Duan Yongqing12

Affiliation:

1. State Key Laboratory of Intelligent Manufacturing Equipment and Technology Huazhong University of Science and Technology Wuhan the People's Republic of China

2. Optics Valley Laboratory Wuhan the People's Republic of China

3. Key Laboratory for Micro/Nano Technology and System of Liaoning Province Dalian University of Technology Dalian the People's Republic of China

4. Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids Institute of Chemistry, Chinese Academy of Sciences Beijing the People's Republic of China

5. Institute of Molecular Aggregation Sciences Tianjin University Tianjin the People's Republic of China

Abstract

AbstractElectrohydrodynamic (EHD) printing technique, which deposits micro/nanostructures through high electric force, has recently attracted significant research interest owing to their fascinating characteristics in high resolution (<1 μm), wide material applicability (ink viscosity 1–10 000 cps), tunable printing modes (electrospray, electrospinning, and EHD jet printing), and compatibility with flexible/wearable applications. Since the laboratory level of the EHD printed electronics' resolution and efficiency is gradually approaching the commercial application level, an urgent need for developing EHD technique from laboratory into industrialization have been put forward. Herein, we first discuss the EHD printing technique, including the ink design, droplet formation, and key technologies for promoting printing efficiency/accuracy. Then we summarize the recent progress of EHD printing in fabrication of displays, organic field‐effect transistors (OFETs), transparent electrodes, and sensors and actuators. Finally, a brief summary and the outlook for future research effort are presented.image

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

Subject

Materials Chemistry,Surfaces, Coatings and Films,Materials Science (miscellaneous),Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3