Ion evaporation-induced tip streaming from liquid drops of ionic liquids

Author:

Chen ChongORCID,Fan YipengORCID,Xia GuangqingORCID,Lu Chang,Sun Bin,Han Yajie

Abstract

Ion evaporation from charged surfaces of ionic liquids has aroused significant interest due to its wide range of applications in various fields, such as ionic liquid ion sources (ILIS), electrospray thrusters, and high-precision etching, among others. This study delves into the transient electrohydrodynamics of ionic liquid drops undergoing ion evaporation with the assistance of an externally applied electric field. A transient electrohydrodynamic (EHD) model is developed to make up for the dearth of direct observation (visualization). A structure morphologically resembling the traditional cone-jet is depicted, featuring charged jets emitted from the drop's ends that subsequently break into tiny droplets. In contrast to the traditional cone-jet, this structure forms through a distinct mechanism, with charge depletion induced by ion evaporation playing a crucial role. A comprehensive exploration of parameter influences reveals the following key findings: (a) the normalized radius of the jets increases with the augmentation of the dimensionless number Ξ, which is defined as the ratio of the electric potential energy of ions to their activation energy for evaporation; (b) enhancing the electric Bond number Bo, which quantifies the ratio of Maxwell stress to surface tension, expedites the temporal evolution of tip streaming.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

S&T Program of Hebei

S&T Innovation Program of Hebei

S&T Program of Langfang

Advanced Space Propulsion Laboratory of BICE and Beijing Engineering Research Center of Efficient and Green Aerospace Propulsion Technology

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3