The influence of bandwidth on the energetics of intermediate to deep water laboratory breaking waves

Author:

Cao RuiORCID,Padilla E.M.ORCID,Callaghan A.H.ORCID

Abstract

An experimental investigation of two-dimensional dispersively focused laboratory breaking waves is presented. We describe the bandwidth effect on breaking wave energetics, including spectral energy evolution, characteristic group velocity, energy dissipation and its rate, and breaking strength parameter, $b$ . To evaluate the role of bandwidth, three definitions of wave group steepness are adopted where $S_s$ and $S_n$ are bandwidth-dependent and $S_p$ remains constant when bandwidth is changed. Our data show two regimes of spectral energy evolution in breaking wave groups, with both regimes bandwidth-dependent: energy dissipation and gain occur at $f > 0.95f_p$ ( $f_p$ is the peak frequency) and $f < 0.95f_p$ , respectively. The characteristic group velocity, which is used in energy dissipation calculations, increases by up to 7 % after wave breaking, being larger for higher bandwidth breaking waves. An unambiguous bandwidth dependence is found between $S_p$ and both the fractional and absolute wave energy dissipation. Wave groups of larger bandwidth break at a lower value of $S_p$ and consequently lose relatively more energy. The energy dissipation rate depends on the breaking duration which itself is bandwidth dependent. Consequently, no clear bandwidth effect is observed in energy dissipation rate when compared with either $S_p$ or $S_s$ . However, there is a systematic bandwidth dependence in the variation of $b$ when parameterised in terms of $S_p$ , with their relationship becoming increasingly nonlinear as bandwidth increases. When parameterised with $S_s$ , $b$ shows a markedly reduced bandwidth dependence. Finally, the numerical breaking onset and relationship between $b$ and $S_s$ in the numerical study of Derakhti & Kirby (J. Fluid Mech., vol. 790, 2016, pp. 553–581) is validated experimentally.

Funder

Royal Society

National Science Foundation

Natural Environment Research Council

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3