The hunt for the Kármán ‘constant’ revisited

Author:

Monkewitz Peter A.ORCID,Nagib Hassan M.ORCID

Abstract

The log law of the wall, joining the inner, near-wall mean velocity profile (MVP) in wall-bounded turbulent flows to the outer region, has been a permanent fixture of turbulence research for over hundred years, but there is still no general agreement on the value of the prefactor, the inverse of the Kármán ‘constant’ $\kappa$ , or on its universality. The choice diagnostic tool to locate logarithmic parts of the MVP is to look for regions where the indicator function $\varXi$ (equal to the wall-normal coordinate $y^+$ times the mean velocity derivative $\mathrm {d} U^+/\mathrm {d} y^+$ ) is constant. In pressure-driven flows, however, such as channel and pipe flows, $\varXi$ is significantly affected by a term proportional to the wall-normal coordinate, of order $O({Re}_{\tau }^{-1})$ in the inner expansion, but moving up across the overlap to the leading $O(1)$ in the outer expansion. Here we show that, due to this linear overlap term, ${Re}_{\tau }$ values well beyond $10^5$ are required to produce one decade of near constant $\varXi$ in channels and pipes. The problem is resolved by considering the common part of the inner asymptotic expansion carried to $O({Re}_{\tau }^{-1})$ , and the leading order of the outer expansion. This common part contains a superposition of the log law and a linear term $S_0 \,y^+{Re}_{\tau }^{-1}$ , and corresponds to the linear part of $\varXi$ , which, in channel and pipe, is concealed up to $y^+ \approx 500\unicode{x2013}1000$ by terms of the inner expansion. A new and robust method is devised to simultaneously determine $\kappa$ and $S_0$ in pressure-driven flows at currently accessible ${Re}_{\tau }$ values, yielding $\kappa$ values which are consistent with the $\kappa$ values deduced from the Reynolds number dependence of centreline velocities. A comparison with the zero-pressure-gradient turbulent boundary layer, further clarifies the issues and improves our understanding.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3