Sensitivity study of resolution and convergence requirements for the extended overlap region in wall-bounded turbulence

Author:

Hoyas Sergio1ORCID,Vinuesa Ricardo2ORCID,Schmid Peter3ORCID,Nagib Hassan4ORCID

Affiliation:

1. Universitat Politècnica de València

2. KTH Royal Institute of Technology

3. King Abdullah University of Science and Technology

4. ILLINOIS TECH

Abstract

Direct numerical simulations (DNSs) are among the most powerful tools for studying turbulent flows. Even though the achievable Reynolds numbers are lower than those obtained through experimental means, DNS offers a clear advantage: The entire velocity field is known, allowing for the evaluation of any desired quantity. This capability includes the computation of derivatives of all relevant terms. One such derivative provides the indicator function, which is the product of the wall distance and the wall-normal derivative of the mean streamwise velocity. This derivative may depend on mesh spacing and distribution, but it is extremely affected by the convergence of the simulation. The indicator function is crucial for understanding inner and outer interactions in wall-bounded flows and describing the overlap region between them. We find a clear dependence of this indicator function on the mesh distributions we examine, raising questions about classical mesh and convergence requirements for DNS and achievable accuracy. Within the framework of the logarithmic plus linear overlap region, coupled with a parametric study of channel flows and some pipe flows, sensitivities of extracted overlap parameters are examined. This study reveals a path to establishing their high-Reτ or nearly asymptotic values at modest Reynolds numbers, but larger than the ones used in this work, accessible by high-quality DNS with reasonable cost. Published by the American Physical Society 2024

Funder

King Abdullah University of Science and Technology

European Research Council

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3