Abstract
The mean flow in a turbulent boundary layer (TBL) deviates from the canonical law of the wall (LoW) when influenced by a pressure gradient. Consequently, LoW-based near-wall treatments are inadequate for such flows. Chen et al. (J. Fluid Mech., vol. 970, 2023, A3) derived a Navier–Stokes-based velocity transformation that accurately describes the mean flow in TBLs with arbitrary pressure gradients. However, this transformation requires information on total shear stress, which is not always readily available, limiting its predictive power. In this work, we invert the transformation and develop a predictive near-wall model. Our model includes an additional transport equation that tracks the Lagrangian integration of the total shear stress. Particularly noteworthy is that the model introduces no new parameters and requires no calibration. We validate the developed model against experimental and computational data in the literature, and the results are favourable. Furthermore, we compare our model with equilibrium models. These equilibrium models inevitably fail when there are strong pressure gradients, but they prove to be sufficient for boundary layers subjected to weak, moderate and even moderately high pressure gradients. These results compel us to conclude that history effects in mean flow, which negatively impact the validity of equilibrium models, can largely be accounted for by the material time derivative term and the pressure gradient term, both of which require no additional modelling.
Funder
Office of Naval Research
National Natural Science Foundation of China
Center for Turbulence Research, Stanford University
Publisher
Cambridge University Press (CUP)