Optimal two-dimensional roughness for transition delay in high-speed boundary layer

Author:

Jahanbakhshi RezaORCID,Zaki Tamer A.ORCID

Abstract

The influence of surface roughness on transition to turbulence in a Mach 4.5 boundary layer is studied using direct numerical simulations. Transition is initiated by the nonlinearly most dangerous inflow disturbance, which causes the earliest possible breakdown on a flat plate for the prescribed inflow energy and Mach number. This disturbance primarily comprises two normal second-mode instability waves and an oblique first mode. When localized roughness is introduced, its shape and location relative to the synchronization points of the inflow waves are confirmed to have a clear impact on the amplification of the second-mode instabilities. The change in modal amplification coincides with the change in the height of the near-wall region where the instability wave speed is supersonic relative to the mean flow; the net effect of a protruding roughness is destabilizing when placed upstream of the synchronization point and stabilizing when placed downstream. Assessment of the effect of the roughness location is followed by an optimization of the roughness height, abruptness and width with the objective of achieving maximum transition delay. The optimization is performed using an ensemble-variational (EnVar) approach, while the location of the roughness is fixed upstream of the synchronization points of the two second-mode waves. The optimal roughness disrupts the phase of the near-wall pressure waves, suppresses the amplification of the primary instability waves and mitigates the nonlinear interactions that lead to breakdown to turbulence. The outcome is a sustained non-turbulent flow throughout the computational domain.

Funder

Office of Naval Research

Air Force Office of Scientific Research

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3