ML for fast assimilation of wall-pressure measurements from hypersonic flow over a cone

Author:

Morra Pierluigi,Meneveau Charles,Zaki Tamer A.

Abstract

AbstractData assimilation (DA) integrates experimental measurements into computational models to enable high-fidelity predictions of dynamical systems. However, the cost associated with solving this inverse problem, from measurements to the state, can be prohibitive for complex systems such as transitional hypersonic flows. We introduce an accurate and efficient deep-learning approach that alleviates this computational burden, and that enables approximately three orders of magnitude computational acceleration relative to variational techniques. Our method pivots on the deployment of a deep operator network (DeepONet) as an accurate, parsimonious and efficient meta-model of the compressible Navier–Stokes equations. The approach involves two main steps, each addressing specific challenges. Firstly, we reduce the computational load by minimizing the number of costly direct numerical simulations to construct a comprehensive dataset for effective supervised learning. This is achieved by optimally sampling the space of possible solutions. Secondly, we expedite the computation of high-dimensional assimilated solutions by deploying the DeepONet. This entails efficiently navigating the DeepONet’s approximation of the cost landscape using a gradient-free technique. We demonstrate the successful application of this method for data assimilation of wind-tunnel measurements of a Mach 6, transitional, boundary-layer flow over a 7-degree half-angle cone.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3