Ensemble variational method with adaptive covariance inflation for learning neural network-based turbulence models

Author:

Luo QingyongORCID,Zhang Xin-LeiORCID,He GuoweiORCID

Abstract

This work introduces an ensemble variational method with adaptive covariance inflation for learning nonlinear eddy viscosity turbulence models where the Reynolds stress anisotropy is represented with tensor-basis neural networks. The ensemble-based method has emerged as an important alternative to data-driven turbulence modeling due to its merit of non-derivativeness. However, the training accuracy of the ensemble method can be affected by the linearization assumption and sample collapse issue. Given these difficulties, we introduce the hybrid ensemble variational method, which inherits the merits of the ensemble method in non-derivativeness and the variational method in nonlinear analysis. Moreover, a covariance inflation scheme is proposed based on convergence states to alleviate the detrimental effects of sample collapse. The capability of the ensemble variational method in model learning is tested for flows in a square duct, flows over periodic hills, and flows around the S809 airfoil, with increasing complexity in the training data from direct observation to sparse indirect observation. Our results show that the ensemble variational method can learn relatively accurate neural network-based turbulence models in scenarios of small ensemble size and sample variances, compared to the ensemble Kalman method. It highlights the superiority of the ensemble variational method in practical applications, since small ensemble sizes can reduce computational costs, and small sample variance can ensure the training robustness by avoiding nonphysical samples of Reynolds stresses.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

China Association for Science and Technology

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3