Thin disks falling in air

Author:

Tinklenberg AmyORCID,Guala MicheleORCID,Coletti FilippoORCID

Abstract

We experimentally investigate the settling of millimetre-sized thin disks in quiescent air. The range of physical parameters is chosen to be relevant to plate crystals settling in the atmosphere: the diameter-to-thickness aspect ratio is$\chi =25\unicode{x2013}60$, the Reynolds numbers based on the disk diameter and fall speed are$Re=O(10^2)$and the inertia ratio is$I^*=O(1)$. Thousands of trajectories are reconstructed for each disk type by planar high-speed imaging, using the method developed by Baker & Coletti (J. Fluid Mech., vol. 943, 2022, A27). Most disks either fall straight vertically with their maximum projected area normal to gravity or tumble while drifting laterally at an angle$<20^\circ$. Two of the three disk sizes considered exhibit bimodal behaviour, with both non-tumbling and tumbling modes occurring with significant probabilities, which stresses the need for a statistical characterization of the process. The smaller disks (1 mm in diameter,$Re=96$) have a stronger tendency to tumble than the larger disks (3 mm in diameter,$Re=360$), at odds with the diffused notion that$Re=100$is a threshold below which falling disks remain horizontal. Larger fall speeds (and, thus, smaller drag coefficients) are found with respect to existing correlations based on experiments in liquids, demonstrating the role of the density ratio in setting the vertical velocity. The data supports a simple scaling of the rotational frequency based on the equilibrium between drag and gravity, which remains to be tested in further studies where disk thickness and density ratio are varied.

Funder

National Science Foundation

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3