Abstract
Turbulence can have a strong effect on the fall speed of snowflakes and ice crystals. In this experimental study, the behaviour of thin disks falling in homogeneous turbulence is investigated, in a range of parameters relevant to plate crystals. Disks ranging in diameter from 0.3 to 3 mm, and in Reynolds number
$Re = 10\unicode{x2013}435$
, are dispersed in two air turbulence levels, with velocity fluctuations comparable to the terminal velocity. For each case, thousands of trajectories are captured and reconstructed by high-speed laser imaging, allowing for statistical analysis of the translational and rotational dynamics. Air turbulence reduces the disk terminal velocities by up to 35 %, with the largest diameters influenced most significantly, which is primarily attributed to drag nonlinearity. This is evidenced by large lateral excursions of the trajectories, which correlate with cross-flow-induced drag enhancement as reported previously for falling spheres and rising bubbles. As the turbulence intensity is increased, flat-falling behaviour is progressively eliminated and tumbling becomes prevalent. The rotation rates of the tumbling disks, however, remain similar to those displayed in still air. This is due to their large moment of inertia compared to the surrounding fluid, in stark contrast with studies conducted in water. In fact, the observed reduction of settling velocity is opposite to previous findings on disks falling in turbulent water. This emphasizes the importance of the solid-to-fluid density ratio in analogous experiments that aim to mimic the behaviour of frozen hydrometeors.
Publisher
Cambridge University Press (CUP)