Experimental investigation of inertial fibres and disks in a turbulent boundary layer

Author:

Baker Lucia J.ORCID,Coletti FilippoORCID

Abstract

We study experimentally the behaviour of negatively buoyant disks and fibres in a turbulent boundary layer. The regime is relevant to the transport of natural sediment or plastic particles in water, with density ratio $\rho _p/\rho _f \sim O(1)$ , major axis lengths $D_p^+ \sim 50$ , friction Stokes numbers $\mbox { {St}}^+ \sim O(10)$ and friction Reynolds number $\mbox { {Re}}_\tau = 620$ . The translational and rotational motion, as well as concentration and dispersion, are compared with those of spheres of similar inertia. Disks and fibres both oversample high-speed fluid near the wall, in agreement with particle-resolved numerical simulations. Fibres tend to orient mostly in the streamwise direction while disks maintain their symmetry axis quasi-normal to the wall. This alignment is more stable for disks than for fibres: the latter undergo strong tumbling near the wall in response to the mean shear and turbulent fluid velocity fluctuations, whereas the former wobble about their preferential wall-normal orientation. The translational and rotational accelerations indicate that, despite the nominal relaxation times being similar, the disks are slower than the fibres in responding to wall turbulence. For both, wall contact causes strong and intermittent tumbling. The concentration profiles follow Rouse–Prandtl theory over a limited portion of the boundary layer, deviating near the wall and in the outer region. This is largely due to the non-uniform settling velocity, which decreases steeply approaching the wall for all particle types. This is, in turn, a consequence of the reduced particle diffusivity, which closely matches the profile of the eddy viscosity.

Funder

Legislative-Citizen Commission on Minnesota Resources

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3