Translational and angular velocities statistics of inertial prolate ellipsoids in a turbulent channel flow up to Re τ = 1000

Author:

Michel AntoineORCID,Arcen Boris

Abstract

Direct numerical simulations of the turbulent flow in a channel are conducted up to $Re_{\tau }=1000$ to examine the influence of the friction Reynolds number on the translational and angular velocities of inertial, prolate ellipsoids. The quadrant distribution of the turbulent events seen by the particles is not significantly affected by the value of $Re_{\tau }$ , but subtle modifications take place, depending on the position in the channel and on the particle relaxation time. Overall, the influence of $Re_{\tau }$ on the first and second statistical moments of the ellipsoids translational velocity is the same as that observed for the fluid velocity. The weak dependence of these statistics to the particle shape previously observed at low Reynolds number remains at higher values of $Re_{\tau }$ . Similarly, the mean and root mean square (r.m.s.) of the angular velocity of the fluid seen by the particles weakly depend on particle shape and they have the same dependence to $Re_{\tau }$ as the angular velocity statistics of the carrier fluid. Particle angular velocity statistics are more strongly affected by the flow Reynolds number due to the evolution of the complex shape and inertia dependent rotation orbits with $Re_{\tau }$ . In the near-wall region the average angular velocity of weakly inertial ellipsoids increases with $Re_{\tau }$ due to their stronger alignment with the mean fluid vorticity. Furthermore, the r.m.s. of the wall-normal component of the angular velocity of more inertial ellipsoids increases with $Re_{\tau }$ owing to the larger fluctuations of the angle between the particle major axis and the velocity-gradient plane.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3