Ecological considerations of Antarctic ozone depletion

Author:

Karentz Deneb

Abstract

Springtime ozone depletion over Antarctica has been observed for over a decade. Associated with ozone depletion is an increase in the levels of biologically harmful ultraviolet-B (UV-B) that reach the earth's surface, a situation that has prompted much controversy about the ecological effects of this atmospheric phenomenon on Antarctic ecosystems. A major hindrance to assessing the ecological impact is lack of appropriate data on Antarctic systems before the present ozone depletion cycle began. In addition, certain physical features of the Antarctic environment (clouds, snow and ice) and the UV-B photobiology (repair processes and protective strategies) of endemic species can alter the potential biological effects of this environmental stress in, as yet, undetermined ways. Increases in incident UV levels will most likely result in changes in the taxonomic structure of communities. The effects of these changes on net productivity and trophic dynamics cannot be accurately assessed without quantifying ambient doeses of UV and characterizing the UV photobiology of individual species. Both the physical features of the springtime environment and the biological responses of endemic species must be considered in future research efforts to evaluate the biological consequences of the Antarctic ozone hole.

Publisher

Cambridge University Press (CUP)

Subject

Geology,Ecology, Evolution, Behavior and Systematics,Oceanography

Cited by 97 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3